An invisible threat

1st May 2020


Web p18 19 car istock 1072993712

Related Topics

Related tags

  • Business & Industry ,
  • Transport

Author

Ruth Martin

Rick Gould asks, are ultrafine particles the new pariah of pollutants?

Earlier this year, a group of international scientists published the results of research that determined the sources of airborne ultrafine particulates (UFPs) in four major European cities. This work illustrates a rapidly growing interest in these tiny particles, which are currently not directly regulated, but can have significant impacts on human health. What are UFPs, where do they originate, and why are they generating so much discussion?

Ultrafine particles

UFPs are particles that are less than 0.1¬µm across, and are also known as PM0.1. These microscopic particles are a small component of PM2.5, itself regulated in ambient air. While the overall mass of PM0.1 is small, they make up for this in their numbers, and ability to reach deep into the human body. “The sheer number of particles in our air is astonishing. Air in our cities typically contains up to 10,000 particles in each cubic centimetre,“ explains Dr Gary Fuller, researcher at Kings College London and member of the Air Quality Expert Group (AQEG), which advises Defra.

The science of counting particles, instead of measuring their mass concentrations for regulation, is not new. In 1880, for example, Scottish meteorologist John Aitken published a paper in the Proceedings of the Royal Society of Edinburgh called 'On dust, fogs, and clouds'. Aitken determined that aerosols form around the nucleus of a dust particle. He had invented a device known as a koniscope, the first instrument that could count the number of particles in the air, and found that the air contains a huge number of particles, all originating from many sources.

During the 20th century, scientists and legislators focused on mass concentrations of airborne particulate matter. Along with epidemiological studies examining the health impacts of this pollutant, this led to legislation to control their emissions and concentrations in ambient air, especially for respirable particulate matter – that is, PM10 and PM2.5.

However, during the past 20 years, there has been renewed interest in the numbers of airborne particles, especially UFPs. “There was growing excitement and concern about the use of engineered nanoparticles, and hazards and risks with them,“ describes Fuller. “In the ambient air, Professor Anthony Seaton proposed a new hypothesis of the mechanism by which particles affected our health, through their number and the number of locations where the body has to mount a response. Both these factors led to renewed interest in counting the tiny particles in our air. Since this time there has been an increasing number of epidemiological studies that have looked at the association between UFPs and health.“

Fuller was part of a team carrying out one of these investigations in London; it found that the number of particles in the air was associated with heart attacks, while other metrics concerning the mass of particles were linked to hospital admissions and deaths associated with respiratory illnesses. Other investigations produced similar results. So, what did the recent research in four European cities reveal?

A tale of four cities

“This project began as an idea with researchers in Barcelona, who identified key European cities that were building large datasets. By understanding the sources in these cities, it would open up the possibility for health studies in the future, and for control policies, too“, says Fuller. The researchers measured UFP numbers in Helsinki, London, Barcelona and Zurich under comparable conditions.

Overall, they discovered that between 74% and 94% of UFP measured came from road traffic, confirming findings from similar investigations. The overwhelming results of several studies on UFP sources point to road-traffic emissions as the main culprit, especially from vehicles with diesel engines. The other major sources are: all types of combustion plants, notably those fuelled by coal, oil, and biomass; aircraft at airports; shipping ports; and municipal waste incinerators. The latter has the smallest emissions of these sources.

Waste incineration

Incinerators themselves have drawn a lot of attention from those concerned with their contributions to ambient levels of UFPs. One pressure group, for example, has repeatedly asserted that incinerators are a significant source of UFPs, although peer-reviewed evidence from measurements does not support this assertion. One detailed investigation in Milan, for example, determined through measurements that UFP numbers in the stack gases of a waste incinerator were equivalent to those measured in ambient air, as evidence shows the abatement techniques for removing UFPs from flue gases are extremely effective. This is because legislation, such as that in the UK and the EU, specifies that incinerators must have best available techniques (BAT), such as fabric filters, to control particulate emissions. Investigations report that fabric filters remove up to 99.99% of UFPs, therefore making incinerators one of the smaller sources of this pollutant. That said, if UFPs in ambient air are clearly a significant health risk, then what are the challenges in monitoring and controlling them?

A secondary challenge

Larger particles, such as PM10 and PM2.5, are now relatively easy to measure and control from many sources. “However, there are some sources of UFPs that are largely outside of any current legislation. And we may need to devise new control technologies and policies for these,“ explains Fuller.

UFPs, like PM10, can be primary pollutants – they are emitted directly from a source, such as car exhausts, biomass boilers and aircraft. However, under the right conditions, semi-volatile compounds in the air can condense and react with other chemicals to form secondary UFPs. Emissions of volatile organic compounds and sulphur dioxide from road traffic, for example, can promote the formation of secondary UFPs.

Secondary UFPs are much more challenging to control. The investigation into UFPs in European cities, for example, found that the concentrations of certain pollutants such as sulphur dioxide and ammonia, temperature and degree of sunlight have a strong influence on forming secondary UFPs. This, in turn, makes them harder to control.

Another challenge is detecting particles that are so tiny, especially if they are smaller than the wavelength of light. The solution is normally to grow them first by condensing butanol onto each tiny particle to enlarge it, so that the particles can then be detected. Monitoring locations are also sparse when compared with those for measuring PM10 and PM2.5, although the AQEG has recommended expanding the number of monitoring stations for UFP so we can learn more about their abundance and behaviour.

Then there is the increasing body of research pointing to the health impacts of UFPs. “A group of prominent European air pollution health-scientists have recently proposed that we include them in air pollution legislation,“ Fuller says.


Tiny but toxic

UFPs are particles that are less than 0.1µm across, and are also known as PM0.1

Air in our cities typically contains up to 10,000 particles in each cubic centimetre

Researchers discovered that between 74% and 94% of UFPs measured came from road traffic


Rick Gould, MIEMA Cenv is a technical advisor at the Environment Agency. He is writing in a personal capacity.

Image credit: iStock

Subscribe

Subscribe to IEMA's newsletters to receive timely articles, expert opinions, event announcements, and much more, directly in your inbox.


Transform articles

Weather damage insurance claims hit record high

Weather-related damage to homes and businesses saw insurance claims hit a record high in the UK last year following a succession of storms.

18th April 2024

Read more

The Science Based Targets initiative (SBTi) has issued a statement clarifying that no changes have been made to its stance on offsetting scope 3 emissions following a backlash.

16th April 2024

Read more

One of the world’s most influential management thinkers, Andrew Winston sees many reasons for hope as pessimism looms large in sustainability. Huw Morris reports

4th April 2024

Read more

Vanessa Champion reveals how biophilic design can help you meet your environmental, social and governance goals

4th April 2024

Read more

Alex Veitch from the British Chambers of Commerce and IEMA’s Ben Goodwin discuss with Chris Seekings how to unlock the potential of UK businesses

4th April 2024

Read more

A project promoter’s perspective on the environmental challenges facing new subsea power cables

3rd April 2024

Read more

Senior consultant, EcoAct

3rd April 2024

Read more

Around 20% of the plastic recycled is polypropylene, but the diversity of products it protects has prevented safe reprocessing back into food packaging. Until now. David Burrows reports

3rd April 2024

Read more

Media enquires

Looking for an expert to speak at an event or comment on an item in the news?

Find an expert

IEMA Cookie Notice

Clicking the ‘Accept all’ button means you are accepting analytics and third-party cookies. Our website uses necessary cookies which are required in order to make our website work. In addition to these, we use analytics and third-party cookies to optimise site functionality and give you the best possible experience. To control which cookies are set, click ‘Settings’. To learn more about cookies, how we use them on our website and how to change your cookie settings please view our cookie policy.

Manage cookie settings

Our use of cookies

You can learn more detailed information in our cookie policy.

Some cookies are essential, but non-essential cookies help us to improve the experience on our site by providing insights into how the site is being used. To maintain privacy management, this relies on cookie identifiers. Resetting or deleting your browser cookies will reset these preferences.

Essential cookies

These are cookies that are required for the operation of our website. They include, for example, cookies that enable you to log into secure areas of our website.

Analytics cookies

These cookies allow us to recognise and count the number of visitors to our website and to see how visitors move around our website when they are using it. This helps us to improve the way our website works.

Advertising cookies

These cookies allow us to tailor advertising to you based on your interests. If you do not accept these cookies, you will still see adverts, but these will be more generic.

Save and close